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ABSTRACT

In this paper the energy propagation through dispersive waves in four atmospheric models is investigated. 
These waves are characterized by an approximate geostrophic balance. Diagrams showing the relation be
tween group velocity, wave velocity, and wave length in the four types of atmosphere are given. It is found 
that:

1. In each of the four models there is always a range of wave length for which group velocity is larger 
than wave velocity, so that new waves can be formed ahead of initial waves.

2. Both divergence or convergence and horizontal solenoids give rise to waves with negative group velocity 
But only in the presence of solenoids is there a range of wave length for which the speed of propagation of 
energy upstream is greater than the wave speed in the same direction. This means that only the horizontal 
solenoids make possible the formation of new waves upstream.

A graphical method is used to construct the distribution of phase resulting from an instantaneous point
source disturbance. The phase curves are constructed for each of the four atmospheric models.

Two applications of the theory are made. The formation of a new trough over North America following an 
intense cyclogenesis in the Gulf of Alaska is interpreted as a result of dispersion from a continuous point 
source of cyclonic relative vorticity into a previously straight westerly current. Computations show a pres
sure rise next to the region of cyclogenesis downstream and a trough farther to the east.

The blocking action observed in the west-wind belt is explained by the dispersion of an initial solitary wave. 
Calculations indicate that the life time of a “blocking action" is longer in high latitudes than in low latitudes; 
this is in agreement with observation.
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1. Introduction
Margultis (1905) first attempted to explain the 

origin of storm energy by conversion of potential 
energy into kinetic energy in a closed system. He 
obtained wind velocities of the correct order of magni
tude to account for the kinetic energy of the storm 
from the release of potential energy of two air masses 
of different temperature standing side by side in a 
confined system. However, it is frequently observed 
that the kinetic energy and solenoidal energy increase 
at the same time in a cyclone. An excellent example 
has been given recently by Cressman (1948). A 
statistical investigation was made by Carson,1 who 
found that an increase of the intensity of the solenoid 
field in the middle troposphere accompanied deepen

1 J. E. Carson, "The variation of horizontal solenoidal concen
tration in the middle and low troposphere during cyclone forma
tion,” Master’s thesis, University of Chicago, 1948.

ing in about 80 per cent of the cases investigated. 
There exists, in fact, a considerable amount of evi
dence that strongly suggests the necessity of rejecting 
or modifying the concept of ‘internal’ or ‘localized 
transformations of the energy of certain characteristic 
atmospheric circulations, and that points to the need 
for investigating systematically the mechanisms of 
energy transfer in the atmosphere.

One such mechanism, and the most apparent, is 
the advective transport of energy, with the speed of 
the prevailing current. But energy can be transmitted 
without the help of advection. This paper is devoted 
to a study of the nonadvective transport of energy due 
to the rapid adjustment between pressure field and 
velocity field, a process which is a consequence mainly 
of the earth’s rotation.

Namias (1944) has described the chain of events 
appearing downstream after sudden formation of an 
intense low in the Gulf of Alaska. The subsequent 
changes in circulation, which certainly cannot be 
explained by air-mass transport, provide an illustra
tion of the process of rapid adjustment between 
pressure and velocity fields ; we shall refer to the energy 
transmission resulting from this process as a dispersive 
transfer of energy.

The importance of dispersive processes in the at
mosphere has recently been brought to the attention 
of meteorologists by Rossby (1945). Earlier (Rossby, 
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1936) he had advenced the hypothesis that the hori
zontal pressure gradients observed in current systems 
of the atmosphere and the ocean to a large extent must 
be interpreted as reactions to the Coriolis forces im
pressed upon these systems by the rotation of the 
earth. He then showed (Rossby, 1937 ; 1938) that any 
sudden local addition of momentum to a rotating 
fluid body will initiate some type of inertia oscillation 
of that body. A small part of the initial energy goes 
into inertia oscillations, but the final equilibrium con
figuration set up between the pressure gradient and 
the current system is established in only a few pendu
lum hours. Part of the initial energy also goes into 
outlying portions of the fluid through dispersion by 
gravitational waves, as was demonstrated later by 
Cahn (1945), who gave a complete mathematical 
analysis of the problem. Through Rossby’s work it is 
clear that a velocity field can result in a pressure field 
which in turn affects the velocity field. This is the 
physical mechanism of the dispersion process in the 
atmosphere.

Generally speaking, in a dispersive process the 
speed of propagation of energy is different from that 
of the prevailing current. The energy is propagated 
with the group velocity which, in the one-dimensional 
case, can be expressed in terms of phase velocity or 
wave length. A simple synoptic manifestation of dis
persion is the common observation that a downstream 
pressure rise (or fall) usually follows an upstream pres
sure fall (or rise).

In this paper we shall investigate the role of dis
persion in certain observed phenomena in the at
mosphere. Before entering into a detailed discussion 
the following point should be noted. Dispersion arises 
from unbalanced motion. Once equilibrium is reached 
dispersion will cease. As pointed out above, dispersion 
essentially arises from the tendency for mutual adjust
ments between the pressure and velocity fields, but 
when these two fields are in balance dispersion ceases.

2. Wave length, phase velocity, and group velocity in 
different atmospheric models

The close relation between energy propagation and 
group velocity may be explained as follows. By group 
velocity we mean the velocity of a group of waves as a 
whole. The individual waves which compose this 
group may advance through it or may be left behind 
it, while the place of the individual wave in the group 
is occupied in succession by other waves. If we assume 
that the energy of wave motion is concentrated at the 
crests of the wave groups, the velocity of propagation 
of energy will certainly be associated with the group 
velocity. Group velocity, phase velocity, and wave 
length are related by the well-known formula

G = C — LdC/dL, (1) 

where G is the group velocity, C the phase velocity, 
and L the wave length. ' ’

In the atmosphere and the ocean almost all forms 
of wave motion are dispersive, i.e., the phase velocity 
of individual waves depends on their wave length. 
The speed of energy propagation in such systems is 
usually different from that of the individual waves. 
Whether new waves will be formed ahead or in the 
rear of an initial wave train, or whether an increasingly 
long trailing wave train may develop, depends on the 
speed of propagation of energy. Since the energy 
propagation depends on group velocity which in turn 
is determined by wave length and phase velocity, a 
discussion of these three elements in different at
mospheric models is desirable. ‘

We shall consider in turn four atmospheric models :
Model A: A uniform, incompressible atmosphere of 

infinite depth, or of finite depth with a rigid cover.
Model B: A uniform, incompressible atmosphere 

with a free surface.
Model C: An incompressible atmosphere with a 

uniform north-south density gradient and a rigid 
cover.

Model D: An incompressible atmosphere with a 
uniform north-south density gradient and a free 
surface.

In each of these models there is a basic current with 
uniform and constant velocity U.

Model A.—The first model is the simplest and has 
been studied by Rossby (1939) and later by Haurwitz 
(1940). In this atmosphere divergence and convergence 
are absent, and for small one-dimensional motion the 
vorticity equation may be written as follows : 

Shi Shi
--------F U------ p 0v = 0, 
dxdt

(2A)

where v is the perturbation velocity transverse to the 
x-direction, and j/3 represents the rate of change north
ward of the vertical component of the earth’s angular 
velocity. Assuming a solution of the form the 
frequency equation from (2A) is v/k = U — 8/k1 2, 
where v is the frequency and k the wave number, or

1 For simplicity in notation we shall depart from the usual 
convention of defining the wave length as 2ir/k. Thus L, as used
throughout this paper, is equal to the ‘conventional’ wave length 
divided by 2ir.

C = U - 0L2, (3A)

where C = v/k is the phase velocity and L = l/k the 
wave length.2 The group velocity, from (1), is then

G = U + (4A)

In this atmosphere the group velocity G is always 
positive and larger than the phase velocity C. It has 
a minimum value U and increases with wave length 
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(fig. 1). Since G is always positive and larger than U, 
the energy is always propagated downstream with a 
speed larger than C. In this system new waves will 
be formed ahead of initial waves.

Model B.—Removing the rigid cover from the first 
model we obtain the second type of atmosphere. In 
this model divergence and convergence are possible. 
The vorticity equation will then take the form

dix D /

where D is the depth of the atmosphere, f the relative 
vorticity, and f the Coriolis parameter. Assuming the 
north-south motion to be geostrophic3 and perturba
tions to be small, the vorticity equation may be 
written in the expanded form

< The reduction of the unrealistically large value of the maxi
mum negative group velocity was suggested by J. Charney.

6 It should be noted that the two following atmospherical 
models, C and D, are not selfconsistent. In these two models the 
presence of horizontal stratification implies that the basic current 
U must increase with height, so the assumption of constant U is not 
justified. However, in the present paper we are concerned only 
with one level. As long as vertical motion does not appear (in 
model C) there may not be interference between upper and lower 
layers and thus it may be justified to deal with one level only ; 
but in model D, vertical motion will be present and the analysis 
of this model is therefore only an approximation.

33D' a3D' dD' dD' ,
—---- U------------f- 3------ — X"----  — 0, (2B)
dx~ dt dx3 dx dl 

where X2 = P/gDo, Do is the undisturbed depth, and 
D*  the deformation of the free surface. The wave 
velocity is

U - BL’
C = ----------- ,

1 + XV,2
(3B)

and the group velocity may be obtained by substitut
ing (3B) in (1), the result being

U + BL2 + 2 XV?C
G - -------------------- -------

1 + \2U
(4B)

The graphs for C and G are shown in fig. 2. I he solid 
curve is the wave velocity C, obtained from (3B) ; 
the dashed curve is the group velocity G, from (4B). 
Both C and G have the same lower limit — ^/X2, corre
sponding to infinite wave length. Thus the phase 
velocity C decreases with increasing wave length 
asymptotically to the limiting value — 3/X2, not as 
in the nondivergent case where it decreases without 
limit. At the wave length La = U/3 corresponding
to zero phase velocity,

G = GB = 2 67(1 + XV.;2).

The group velocity G first increases with wave length 
until the latter reaches a value where. d’CldL2 = 0 ; 
at this point

G = = i(917 + M
C = &(3U - 0X-2).

After this wave length is reached, the group velocity 
decreases first rapidly and then asymptotically to the 
value —S/X2.

3 The geostrophic assumption results simply in the omission of 
long gravitational waves, in which we are not interested (Char
ney, 1947). The approximation of using the geostrophic relation 
after the vorticity equation has been written down does not mean 
that acceleration terms are neglected. The analysis of phase and 
group velocity in model B has been presented in Prof. Rossby s 
lectures and is reproduced here with his kind permission.

A striking difference between the nondivergent case 
and the present one in which convergence and di
vergence appear, is that in the latter the group ve
locity can be negative. This means that in divergent 
motion energy can be propagated upstream. Specific 
examples of this process will be given later. From fig. 2 
it is seen that the group velocity is always larger than 
the phase velocity. Hence new waves may be formed 
downstream ahead of the initial disturbance, but not 
upstream in the rear of the initial disturbance, though 
energy can be propagated upstream. Since G = C for 
L —> x, energy will be propagated with the speed of 
these long retrogressive waves which may therefore 
retrograde without changing in intensity.

The particular interest of this model lies in the 
second group of waves, long and retrogressive with 
negative group velocity. The limiting value of this 
negative phase or group velocity is — 0/X2, as already 
noted. These very long waves are nondispersive waves 
and move with practically constant relative vorticity. 
The change of vorticity due to latitude is balanced by 
the effect of divergence, as is easily seen from (2B). 
For very long wave length the first two terms in (2B) 
may be neglected since they are inversely proportional 
to the square or cube of wave length. Then the remain
ing two terms—expressing respectively the vorticity 
change produced by latitude variation and by di
vergence—must balance each other :

dD’/dt - ^x-W/a.t = 0,

giving a phase velocity equal to — S/X2. faking repre
sentative values in middle latitudes we find that 
-3/X2 is of the order of 100 m sec~‘. However, this 
unrealistically large value can never occur in the 
atmosphere due to the fact that the wave length is 
limited by the circumference of the earth.4

Model C.5—To investigate the effect of horizontal 
solenoids in purely horizontal motion we may imagine 
an infinitely deep atmosphere which has uniform 
density vertically and a uniform north-south density 
gradient. In this model convergence and divergence 
are absent, and the vorticity equation is

3 A d2r da dp da dp
 h U H = F------ — n, 
dxdl-------dx2---------------- dx dy-----dy dx

a being the specific volume, p the pressure, and n the 
number of solenoids per unit area. For the purpose of 



4 JOURNAL OF METEOROLOGY Volume 6

evaluating n it is reasonable to substitute the geo
strophic wind relation ;• one then obtains

dh d2» / dq dq \
 F U —- + Sv = / ( —------ — I , 
dxdl------- dx2 \ dt dt /

where q = In a. Since the motion is incompressible and 
horizontal we have

dq dq , dq , dq
— =-----p U----- Fv — = 0. 
dt dt dx dy

Writing s — dq/dy for the undisturbed value of the 
horizontal stratification, and assuming perturbations 
independent of y, the vorticity equation becomes

+ (0 + fs) - + 0U------ 0. (2C) 
dt dx

Assuming a solution of the form the wave
velocity C = v/k is found to be

C = U - ± /), (3C)

where a=0+fs, l = (.l—L,2/L2)*,  and Lc = 2^fsU/<r. 
This is exactly the same result as derived by Jaw 
(1946) using a different approach. The group velocity 
corresponding to (3C) is

• See footnote 2.

G = U + ^^(l ± I-1). (4C)

Equation (3C) reveals immediately one important 
aspect of this model, i.e., there exists a critical wave 
length Lc below which C becomes complex. This im
plies the existence of unstable waves in this type of 
atmosphere. The instability increases with s and U. 
(It is easy to see that the instability increases with 5. 
It increases with U because the isobaric slope is pro
portional to U and so also is the number of horizontal 
solenoids per unit area.) These unstable waves are 
relatively short and progressive.

There are two solutions for C corresponding to the 
two signs in the parenthesis of (3C). For L < Lc, 
the positive sign represents a damped wave system, 
while the negative sign represents unstable waves. 
Whether we choose the positive or negative sign (or 
both) is dependent on the type of boundary or initial 
conditions imposed on the disturbance. The wave 
system may therefore be unstable for certain types of 
disturbances and damped for other types. When 
L > Lc the waves are neutral, for either choice of 
sign in (3C).

Damped or unstable waves. For wave lengths smaller 
than the critical one the disturbance will be either 
damped or unstable. In either case C is a complex 

number. The wave velocity will be the real part of 
(3C) :

C = U — I al?, for L < Lc,

and the group velocity is

G = U + ^®L2, for L < Lc.

Thus G is always larger than C for this range of wave 
length. At the critical wave length,

G Gc = U( 1 + 2/s/<r), for L -♦ U.

Neutral waves. When the wave length is larger than 
the critical value, we may take either the positive 
sign or the negative sign or both in (3C), depending 
on the nature of the disturbance. For simplicity we 
will consider the first two possibilities only.

Taking the positive sign in (3C), it is readily seen 
that

C > Cc = U( 1 — 2fs/a), for L —> Lc \

and C —> — «s, for L —> oo. Differentiating (3C) with 
respect to L we have (for L > ZJ

dC/dL = — %<?L(l 2 + l~*),

which approaches negative infinity as L —> Lc, since 
/ —> 0. The relation between group velocity and wave 
length is given by (4C) with plus sign. At the sta
tionary wave length L„, which can be seen to be equal 
to

G->G. = 20U/(0 - fs), for L L,.

Also, G —> oc as L —> Lc or L —» 00. Hence, the group 
velocity will first decrease with increasing wave 
length until the minimum value Gmin = U{ 1 + 8fs/o) 
is reached, and then increases without limit. The 
curves for wave velocity and group velocity are shown 
in fig. 4. The solid curve represents wave velocity and 
the dashed curve group velocity ; both curves have a 
distinct discontinuity at L = Lc.

Now let us consider the negative sign in the paren
thesis of (3C), for the case L > Lc. It is readily seen 
that

C —> Cc = U( 1 — 2fs/a), for L — Lc
C —* Cx — fs/a), for L

Further, dC/dL —> œ as L —> Lc. Thus C increases 
very rapidly from Cr and then asymptotically to Cx 
as wave length further increases (fig. 3).

The expression for group velocity is given by (4C) 
with the minus sign, from which,

G—> G® = U( 1 —fs/a), for L—> œ,

and G —> — as L —♦ Lc. From the curve for C it is 
seen that C increases first very rapidly and then 
asymptotically to G®. The curves for C and G are 
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shown in fig. 3, solid line for C and dashed line for G. 
Both curves are discontinuous at L = Lc, One 
interesting point is that no stationary wave length 
exists for this case; all waves are progressive. Since 
G —> C as L increases, long individual waves can 
travel downstream without changing intensity.

For the first type of disturbance—positive sign in 
(3C), damped waves for L < Lc—energy can be 
propagated only downstream. Since group velocity 
is larger than wave velocity new waves can be formed 
ahead of initial wave trains. For the second type of 
disturbance—negative sign in (3C), unstable waves 
for L < Le—energy can be propagated in both direc
tions. Since the speed of energy propagation in either 
direction can be larger in magnitude than the wave 
speed, new waves may be formed both downstream 
and upstream.

Model D.—We come now to the fourth and last 
model, in which both horizontal solenoids and di
vergence or convergence are operating. The vorticity 
equation in this case may be written :

For small motions we have

d2y d2v dq f dD'
——- + U------ p |8y + /------ ——■—■
dxdt dx2 dt Do dt

= 0.

In writing the above equation the geostrophic-wind 
relation was used in evaluating the divergence and 
solenoid terms of the vorticity equation.7

The geostrophic-wind equation for the north-south 
velocity component is

g dD 
y =------ ,

f dx

and the condition for incompressibility is

■-----F U — 
dt dx

Through elimination of D' and q we have

d4V 
d^dt2

d4V d4v d’v
+ 2 U-------- F V1------- A2 -

ax3 dt dx4 a/2 
d2V

+ —— + b------ — 0.
dx2 dxdt

(2D)

where A2 = P/gD» and b = $ -}- fs — X2U. Assuming 
a disturbance of wave form «'(**-"')  the phase speed C 
is found to be

U - |L2(i ± la)
C — - ■

______ 1 -F A2/?
7 See footnote 2.

(3D)

where / = (1 — L^/L2)^ a = (b2 + 40A 2Uy, and 
Lc = 2>lfsU/a is the critical wave length below which 
C becomes complex. It can be verified that (3D) 
reduces to equation (3B) by putting 5 = 0 and goes 
to (3C) by putting A2 = 0 (or gD0 —» »). The group 
velocity corresponding to (3D) is

U+ Wb ± Ma) + 2X2L2C
G------------------ --------------------------- (4D)

Damped or unstable waves. The wave velocity and 
group velocity have a discontinuity at L = Lc as 
in model C. When L < Lc we may take the wave
velocity to be the real part of (3D) as before :

U - #Z2
1 + X2L2 ’

It decreases with increase of L. For the group velocity 
we have, from (3D),

U + W + 2\2L2C 
G =----------------------------
1 -F A2P

This is always positive and larger than C.
Neutral waves. For L > Lc we take first the case of 

positive sign in (3D). As L increases, C will first de
crease very rapidly and then asymptotically to its 
limiting negative value ; thus

C —> C® = — |A-2(6 ~F a), for L —> .

The group velocity (plus sign in (4D)) approaches 
positive infinity for L —> Lc, and decreases very 
sharply to a minimum value at approximately 
L = 0.9La. It increases again from this wave length 
to a maximum value at approximately L = 2.3La and 
then decreases to its asymptotic value G» = Cx for 
L —> co. Fig. 5 shows the curves for C and G in rela
tion to L.

Taking the negative sign in (31)), we can see that 
dC/dL —» co as L —> Lc and that

C —> C® = — ^A~2{b — a), for A —> co.

Thus, C first increases rapidly and asymptotically to 
the limiting value C®. The group velocity (minus 
sign in (4D)) approaches negative infinity as L —* L, 
and grows very rapidly to its maximum value (which 
is only very slightly higher than C®) and then grad
ually falls off to a limiting value G® = C® as L —> « 
(fig. 6).

In the first case of this model—positive sign in 
(3D), damped waves for L < Lc—new waves can 
be formed both upstream and downstream. Since 
G —♦ C > 0 as L increases, long progressive waves 
can travel without changing intensity. In the second 
case—negative sign in (3D), unstable waves for 
L < Le—new waves can be formed only downstream.
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In this case energy can be propagated upstream, but 
only for very long waves can energy travel with the 
individual waves, which then will not change in 
intensity.

It is interesting to compare figs. 1, 2, 4, and 5. 
In fig. I there is only one branch of waves, with only 
positive group velocity; the phase velocity decreases 
without limit while the group velocity increases with
out limit as wave length increases. The effect of 
divergence (fig. 2) is to add another branch of waves 
and to give rise to waves with negative group ve
locity. In the presence of divergence the magnitudes 
of the group and phase velocity are limited.

Comparing figs. 1 and 4 we see that the presence of 
solenoids also gives rise to another branch of waves, 
but the group velocity of this branch (from Gc to Gmin) 
is also positive. The combined effect of divergence and 
solenoids is clearly shown in fig. 5. Both GmM of fig. 2 
and Gmin of fig. 4 appear in fig. 5, as well as the effect 
of divergence in limiting the magnitude of the group 
and phase velocity (C —> Gx and G —> G, as L —> x).

We may call the branch of waves which appears in 
each of the four models the 'barotropic-nondivergent' 
branch, the branch of waves which appears only in the 
presence of divergence the ‘divergent’ branch, and 
the branch of waves which appears only in the pres
ence of solenoids the ‘solenoidal’ branch. With this 
terminology8 we can see that in fig. 1 we have only the 
barotropic-nondivergent branch. In fig. 2 the waves 
with wave length smaller than Z.mai (where G = Gmax) 
belong to the barotropic-nondivergent branch, while 
for wave lengths larger than Lnilix the waves belong 
to the divergent branch. In fig. 4 the waves with wave 
length between Lc and Lmi„ (where G = Gmi„) are 
of the solenoidal branch; all other wave lengths in 
this model may be considered to belong to the baro
tropic branch. In fig. 5 the solenoidal branch is be
tween the wave length Lc and Ln,in, the divergent 
branch corresponds to wave length larger than Lmüx 
and the barotropic-nondivergent branch consists of 
waves of wave length smaller than Lc and between 
^min and Tniax.

if we consider figs. 3 and 6, we cannot separate the 
divergent from the solenoidal branch. In these two 
figures, only waves with wave length smaller than Le 
are of barotropic-nondivergent character.

From the foregoing discussion we may note that the 
divergence affects mainly the long waves, that the 
solenoids affect mainly the waves of moderate wave 
length, and that the very short waves are not ap
preciably affected by either of these factors.

The foregoing analysis for models C and D was 
based on the assumption that the temperature gra-

• The terms are not rigorous because the effect of divergence or 
solenoids does show up in the barotropic-nondivergent branch of 
waves of models C and D.

dient is not very strong so that fs < 0. For a tempera
ture gradient strong enough so that fs > 0 the an
alysis must be modified somewhat.

Let us discuss model C first. The wave velocity 
for this model, when the wave length is smaller than 
the critical one, is

C = U — |aL2, for L < Lc, 

where a = 0 + fs. The stationary wave length for 
this range is

Lf = <2 U/(0+fs).

This is easily verified to be larger than, equal to, or 
smaller than the critical wave length Lc according as 
fs is smaller than, equal to, or larger than 0. Hence 
there will not be a stationary wave in the region L <LV 
if fs < 0. In casefs > 0 there will then exist two sta
tionary waves of wave lengths Lf = ^2U/(0 + fs) 
and Ls = VU/0 respectively in the regions L < Lc 
and L > L?. If fs > 0, it can be seen that both sta
tionary waves will occur in fig. 4 while only the sta
tionary wave of wave length L,' will occur in fig. 3.

By differentiating the expression for Lc with respect 
to fs we obtain a maximum value of Le for fs = 0. 
This maximum value of Lc is equal to V U/0. Hence the 
value of Le will always stay between ^2U/(0+fs) 
and L3 = U/0. The three wave lengths, namely, L,', 
Lc, and L, will coincide when fs = 0.

A similar discussion can also be applied to model D. 
the critical temperature gradient in this model being 
given by fs = 0 + X2G.

The inequalities fs > 0 or fs > 0 + X2L7 will not 
occur in lower latitudes, but may be valid in high 
latitudes where 0 is small and f is large, or in high 
elevations where the temperature gradient is strong. 
The existence of this secondary stationary wave length 
in the unstable (or damping) range of wave length 
may provide an explanation of the fact that a system 
frequently develops (or damps out) without displace
ment.

To summarize the discussion in this section we max 
make the following statements:

L In each of the four models we have studied there 
is always a range of wave length for which the group 
velocity is larger than the wave velocity, so that new 
waves can be formed ahead of initial waves.

2. The presence of divergence or convergence re
duces the speed of propagation of energy and gives 
rise to a barotropic-divergent branch of waves. The 
presence of horizontal solenoids gives rise to the 
solenoidal branch of waves and may produce two 
stationary wave lengths.

3. Both divergence or convergence and horizontal 
solenoids give rise to waves with negative group velocity. 
But only in the presence of solenoids is there a range
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Fig. 1. Group velocity (broken line) and phase velocity (solid 
line) as a function of wave length in model A.

Fig. 4. Group velocity and phase velocity as a function of wave 
length in model C when the waves with wave length below the 
critical value Le are damped (positive sign in eq. (3C)).

WA/E LENGTH (uNiT. Ly)

Fig. 2. Group velocity and phase velocity as a function of wave 
length in model B. Both curves are limited by the horizontal 
asymptotic line G„ = G,„™. '

h

Fig. 5. Group velocity and phase velocity as a function of wave 
length in model D when the waves with wave length below the 
critical value Le are damped (positive sign in eq. (3D)). Both 
curves are limited by the horizontal asymptotic line (% = GmiC.

g

J

WAVE LENGTH (UNIT’LL WAVE-LENGTH (uni I u

Fig. 3. Group velocity and phase velocity as a function of wave 
length in model C when the waves with wave length below the 
critical value L, are unstable (negative sign in eq. (3C)).

of wave length for which the speed of propagation 
of energy upstream is greater than the wave speed in 
the same direction. This means that only the horizontal 
solenoids make possible the formation of new waves 
upstream.

3. The distribution of phase resulting from an in
stantaneous point-source disturbance

it is well known that for a one-dimensional point 
source the group velocity is equal to9

G = x/t.
• See, for example, Lamb (1932, §241). For limitations of this 

formula, see Rossby (1945).

Fig. 6. Group velocity and phase velocity as a function of wave 
length in model D when the waves with wave length below the 
critical value Lc are unstable (negative sign in eq (3D)).

This formula is of great help in evaluating the phase 
distribution in a wave motion produced by a point 
source without entering into a detailed analysis of the 
motion (Rossby, 1945). Assuming the group velocity 
to be given uniquely by wave length L (or wave num
ber k = 1 /L),

G ^) = p(d^/dx),

where k = dp/dx is the wave number and p the phase 
angle. Then, solving symbolically for dp/dx,

dp/dx = ip-^x/t).

Thus, in principle, p can be found through integration 
if the function <p(k) is known.
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Model A Model C

Model B Model D

MGmmt = Goot , 
0

Fig. 7. Phase distribution in x, /-plane resulting from an instantaneous point-source disturbance. Upper left, model A; lower left, 
model B; upper right, model C (when the plus sign is taken in equation (3C)); lower right, model D (when the plus sign is taken in 
equation (3D)). The stright lines emanating from the origin are lines of constant group velocity G = x//; the curves are lines of equal 
phase. The values of the parameters used in constructing these diagrams are, in egs units:/ = 10~<, ft = 1.60 X 10"", s = 5 X 10-10, 
g - 10', Dn = 10*. *

However, the graphical method outlined below 
will serve to give a sufficiently accurate shape of the 
phase curves p(x, /) = constant in the x, /-plane due 
to a point-source disturbance. The region of disturb
ance by a point source will be confined between the 
two lines x = Gnijn/ and % = G,nax/ where Gm in and 
Gmax are the minimum and maximum group velocities. 
Between these two lines are drawn the lines x = G„/. 
x = Ut, x = Gx/, and x = Gc/, where G, is the group 
velocity for L = L, (the stationary wave length), U 
is the basic wind velocity, Gx the common limiting 
value of G and G as Z —> », and Gc the group velocity 
for L = Lc (the critical wave length). Since

/ dx \ d//dl
\ dl / $ dip/dx

the curves ip(x, /) = constant will start from the line 
x = Gm in/ or x = Gmax/ and have a slope10 of GmoG1 
or Gmax-1, where Cmin and Gmax are the phase velocities 
corresponding to Gm in and Gmax, respectively. The 
^-curves will cross the above four lines with a slope 
giving the proper phase velocity corresponding to the 
group velocities G„ U, Gx, and Gr, respectively. If 
these characteristic lines do not provide sufficiently 
accurate shapes of ^-curves we may draw any number 

10 The phase diagrams are plotted with x as abscissa and / as 
ordinate.

of auxiliary lines x = G/. Then the ^-curves will cross 
these lines with a slope of G-1, G being the phase 
velocity corresponding to G.

The characteristic values of the wave length, 
group velocity, and wave velocity used for the con
struction of the ^-curves have been given in section 2. 
For the atmospheric models C and D two branches of 
waves are considered, one branch with wave length 
smaller than the critical value Le and the other with 
wave length larger than Lc. (For the latter branch 
two cases, corresponding respectively to the positive 
sign and negative sign in (3C) and (30), may be 
distinguished.)

With these characteristic values of the wave length, 
group velocity, and wave velocity, the ^-curves re
sulting from a point-source disturbance in the four 
different models are constructed by means of the 
graphical method just described.

Model A.—In fig. 7 (upper left) the ^-curves ap
proach asymptotically to two lines parallel respec
tively to the lines x = Ut and / = 0. The slope of the 
^-curves changes sign along the line x = 2Ut; this 
implies retrogressive waves in the region to the right 
of x = 2Ut and progressive waves in the region to the 
left of this line.

Model B.—In this model the region of disturbance 
is between x = Gm,n/ = G,/ and x = Gmaxt. Since 
between the values U and Gmax each value of the 
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group velocity corresponds to two values of the wave 
length and wave velocity, at each point between the 
two lines x = Ut and x — Gmaxt there exist two wave 
trains of different wave length and wave velocity.

Let us first consider the branch of waves with wave 
length from 0 to (Xv3)-^ (the wave length correspond
ing to Gm ax). These waves will disturb only the region 
between x = Ut and x = Gmaxt The ^-curves, for 
this branch of waves, approach asymptotically a line 
parallel to x = Ut and the slope changes sign along 
the line x = Gst so as to give progressive waves above 
this line and retrogressive waves below it (fig. 7, 
lower left). The ^-curves cut the line x = Gmaxt with a 
slope of value Cmax-1. The second branch of waves, 
i.e., from (Xv3)"' to L —» x, will be felt in the whole 
disturbed region. Since this branch consists only of 
retrogressive waves, the family of ^-curves caused by 
this branch does not change slope and approaches 
asymptotically a line parallel to x = Gmint = Gxt. 
The two sets of ^-curves are tangent to each other 
(cusped) along the line x = GMaxt. From fig. 7 (lower 
left) it is seen that between x = Gmuxt and x = GJ the 
two wave trains are progressive, and between % = G J 
and x = Ut one wave train is retrogressive and the 
other is progressive. In the rest of the disturbed region, 
there is only one wave train, retrogressive.

Model C.—In this model we must separate two 
branches of waves, one branch with wave length 
smaller than the critical wave length L, and the other 
with wave length larger than Lc. The first branch of 
waves disturbs only the region between the two lines 
x = Ut and x = G J. The ^-curves in this region ap
proach asymptotically a line parallel to x = Ut and 
cut the line x = G J with a slope of Cc~'.

For L > Lc there are two or three possible solutions 
depending on whether one takes positive, negative, 
or both signs in equation (3C). We shall consider the 
positive sign only. The region disturbed by this branch 
of waves is from the x-axis to the line x = Gmi„t. 
Within this region there exist two wave trains at each 
point because one value of group velocity corresponds 
to two wave lengths (fig. 7, upper right).

Considering the waves with wave length from Lc to 
2Le/y/3 (the wave length corresponding to G,„in) the 
^-curves start from the x-axis (since G = % for this 
case) with a slope of C^1, cutting the line x = GJ 
with infinite slope (since C = 0 along this line) and 
finally end on the line x = Gmint with a slope Cmin"'.

The other branch of waves, of wave length from 
2LC/V3 to °C, gives another set of ^-curves which is 
tangent to the first set at the line x = G,^„/ and 
asymptotically approaches a line parallel to the x-axis, 
so as to give an infinite phase velocity as L —> «.

From fig. 7 (upper right) we can see that between 
x = Ut and x = GJ there is only one progressive 
wave train of short wave length ; between x = GlniJ

8 8 8;
* "^mox

Fig. 8. Distribution of group velocity, phase velocity, wave 
length, and phase angle in x, /-plane resulting from an instan
taneous point-source disturbance in model A. Along the circular 
are the inner scale is for measurement of the phase velocity, the 
central scale for the wave length, and the outer scale for the group 
velocity.

and x = Gst there are two wave trains, both retrogres
sive ; and between x = Gat and the x-axis there are also 
two wave trains, one progressive and the other retro
gressive. The region between x = GJ and x = Gmin/ 
is left undisturbed.

Model D.—In this atmospheric model waves are 
also branched into two groups at the critical wave 
length L... Taking the positive sign in (3D) we obtain 
fig. 7 (lower right) for the phase distribution. The 
region disturbed by a point-source is between the 
x-axis and x = Gxt. From fig. 5 we may pick out seven 
characteristic values of group velocity, namely U, 
GC, , Gniin, G„, Gmax, and G«. Corresponding to these 
seven values of the group velocity there are seven 
characteristic lines shown in fig. 7 (lower right). 
Between the x-axis and x = GMaxt there is one progres
sive wave train with almost uniform phase velocity 
since the phase velocity varies very little within this 
range of group velocity. From x = G,„ax/ to x = G,„in/ 
there are three wave trains because one group velocity 
corresponds to three wave lengths ; above the line 
x = Gst two of the three wave trains are progressive 
and one is retrogressive while below this line two are 
retrogressive and one is progressive. Between the 
lines x = G J and x = Ut there are two wave trains, 
one progressive and one retrogressive. In the rest of 
the disturbed region there exists only one retrogres
sive wave train.

Combining the diagram for C and G with that for 
^(x, /) we may construct a single diagram containing 
all the four quantities L, C, G, and ^(x, /). Take the 
first model as an example. In the x, /-plane draw 
between the x-axis and x = Ut an arc with the origin 
of the x, /-plane as center (fig. 8). Three scales are 
laid off along this arc to measure the three quantities 
C, G, and L. In fig. 8 the innermost scale along the 
arc is for L, the central scale is for G, and the outer
most scale is for C. Along each radius vector C, G, and 
L are constant. The three radii in fig. 8 serve as ex-
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amples : along the radius % = Ut, the phase velocity under the conditions 
and group velocity are the same and equal to U;
the wave length is 0. Along x = 2Ut the phase 
velocity is zero, the group velocity is TU, and the 
wave length is Vf7/0. Along the x-axis the phase ve
locity is - », group velocity is + », and wave length 
is + «. The curved lines are the phase curves /(x, t) 
= constant. In this diagram we have everything 
required to describe a wave motion except the ampli
tude. For the case when one group velocity is ap
plicable to two different wave lengths the diagram 
will be slightly more complicated. In such a case we
should have, for this range of group velocities, two 
scales for phase velocity and wave length because in 
this range there are two wave trains of different phase 
velocity and different wave length passing each point.

4. Formation of a new trough downstream from a 
region of cyclogenesis

Through the effect of the earth's rotation, the at
mosphere and oceans become dispersive media, i.e., 
wave velocities in these media are functions of the 
wave length. In his study of the dynamics of the tide 
on the north Siberian shelf, Sverdrup (1927) estab
lished the existence of dispersive waves in the ocean. 
If dispersion is also an important process operating in 
the atmosphere its effect should be observed in our 
daily synoptic charts.

. As a first application of the foregoing theory we shall 
discuss the formation of a new trough downstream 
from a region of cyclogenesis. A brief account of this 
investigation has already been given elsewhere (Uni
versity of Chicago, 1947). It will be reproduced here 
in more detail.

It has been observed that when a deep trough is 
formed in the Gulf of Alaska its effects are almost im
mediately reflected downstream. The chain of events 
established downstream after this new trough forma
tion, appears much faster than could be accounted for 
advectively by means of the prevailing wind speeds. 
Indeed, the effects of this cyclogenesis are not limited to 
its vicinity ; correlated changes in the circulation over 
Europe have been observed. Namias (1944) explains 
this phenomenon by the shortening of wave length due 
to the formation of a new trough ; but how this new 
trough is formed and why it is formed needs theoretical 
study.

Assume a barotropic atmosphere with a uniform 
basic west-wind current and nondivergent motion 
(model A). Beginning at a time t = 0 cyclonic relative 
vorticity is injected at a constant rate at a prescribed 
longitude (x = 0). Then our problem is to solve the 
vorticity equation

a^

p = 0, 
v = 0,

at t = 0
dv/dx = f0 = constant, at x = 0.

This problem, which can be solved by Riemann’s 
method, has the solution

pi ,-z/u U(t-e^ae. (5)

Since vorticity is injected beginning at time / = 0 we 
must have (dv/dx)» = 0 for / < 0. Therefore, when 
x > Ut, the lower limit of the above integral must be 
replaced by zero.

The physical meaning of (5) may be stated as 
follows : The disturbance produced at any point x 
at time t depends only on the disturbance prescribed 
at the source region (i.e., x = 0) from time t — x/U 
up to t; in other words, the disturbance prescribed at 
x = 0 from the time t = 0 up to the time h — xi/U > 0 
will not have an effect on the region

x < Ut — U(h — xi/U).

It can readily be seen from (5) that a steady solution 
exists in the region x < Ut. Putting t — d ~ t and 
the lower limit equal to zero in (5) we have

p Jobfau-Wtl - (2 Ux-'T-iy^dr,

which may, without much difficulty, be shown to 
reduce to

v(x, t) — yok 1 sin kx, for (6)
where k = ^/U. Along the linex = 2Ut we also have 
a steady solution, since in this case (5) reduces to

p(x, 0 = sin #x, for x = 2 Ut. (7)

Equation (5) is difficult to integrate for x > Ut. 
However, approximations can be made in the region 
very remote from the line x = Ut or very near to it 
When x « Ut we may integrate (5) by two steps as 
follows :

v(x, 1) - MJ J0(t)dd f W f J»(^)dO, 
"0 J1IU

The first in
tegral has been found to be sin kx. To evaluate 
the second integral let kxp = $ ; then

P^-P^j»(kxp)dp, 

where P = 2x~^Ut(x - Ut). Since very near the 
line x - Ut, P is very small, (1 - pt)-* may be
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replaced by 1 + approximately. Thus (5) becomes 

v(x, t) « sin kx
- i(l + H*KJr lPJi(kxP)

+ ttok~*x-'P*J^kxP),  (8) 
when x » Ut.

Very far from the line x = Ut, in particular when 
x» lUt, (5) may be written as

nP
t) = IfoX I p( 1 - J0(kxp)dp, 

Jo

where P is small ; we find then approximately

v(x, t) = i(i f iP*)r ok^pjl(kxP)
- i^x-^Jo^xP), (9) 

when x » 2
Near the line x = 2 Ut we may also obtain an ap

proximate formula for (5). For this case we first in
tegrate (5) from 6 = 0 to 6 = x/2U and then from 
x/2U to t. The first integration gives sin kx and 
the second integration gives

pi
± 2Ç0X I p(l — p2)~*  J0(kxp)dp.

Jp

The plus sign is to be taken when x > 2 Ut and the 
minus sign when x < 2Ut. Near the line x = 2Ut it 
can be seen that P is nearly equal to 1. Hence J0{kxp) 
does not vary much in the interval of integration and 
can be taken out of the integral sign approximately. 
The solution for (5) is then

u(x, /) = sin kx — Ifofx — 2Ut)J6(kx), (10)

for x ~ 2 Ut.
To sum up : in the region x < Ut the steady solu

tion (6) holds; on the line x = 2Ut another steady 
solution (7) exists ; very near or remote from the line 
x = Ut the unsteady solutions (8) or (9) are approxi
mately valid, and in the vicinity of the line x = 2Ut 
(10) is the approximate solution.

Two interesting features are to be noted in the fore
going analysis. First is the steady condition existing 
in the region x < Ut. This steady solution is not sur
prising, as the nature of our boundary conditions will 
certainly lead to an equilibrium. But the interesting 
thing is that the steady motion starts from the time 
I = ‘x/U, i.e., the time required for the particle to 
travel from the source of the disturbance to the region 
in question. From the constant-vorticity theory, the 
air particle brings with it the vorticity given to it at 
the source region. Hence, after the time t - x/ U 
the air particles passing through the point x will have 
the same vorticity as that injected at x = 0. Another 
interesting feature is the, steady solution along 
x = 2Ut which suggests that waves on the two sides 
of this line travel in opposite directions.

Fig. 9. Theoretical streamlines illustrating the establishment of 
a new wave in a straight zonal current as a result of the injection 
of cyclonic vorticity at a prescribed latitude.

1 o

46 HOURS

72 HOURS

24 HOURS
1.5 %

Coming to the numerical computation, the method 
of numerical integration has been used in the regions 
where no approximate formula is available. Since 
these regions are to the right of x = Ut, zero is used 
for the lower limit of integral (5) which is for con
venience written as

r(x, t) = fa I Jo(2*V^(x  - <p))d<p 
do

For convenience U is taken as 1000 km per day 
(11.6 m sec-1) and a value of 0 at 45 degrees latitude is 
used (0 = 1.62 X 10-'^ in cgs units). The results of 
computations for three successive days after injection 
of vorticity are summarized in the three streamline 
curves (in nondimensional units) of fig. 9.

The events illustrated by these computed stream
lines have been observed repeatedly, namely the 
establishment of a ridge immediately east of the source 
of cyclogenesis, followed or accompanied by the de
velopment of a second ridge still farther to the east, 
with a new trough developing between these two 
ridges. For synoptic examples of this process, refer
ence may be made to the University of Chicago study 
(1947, figs. 14 and 15), and to a recent paper by Cress
man (1948, fig. 18).

The physical interpretation of this phenomenon is 
quite simple. As soon as the genesis of vorticity ap
pears, the air particles start moving northward. To 
balance the Coriolis force set up by this northward 
motion there must be a pressure rise to the right, 
which will set the air farther to the east into motion.

The ideal conditions (uniform atmosphere and non- 
divergent motion) imposed upon the above analysis 
are perhaps too far from reality. We shall now in
vestigate the effects of divergence and solenoids on this 
problem. Taking divergence into consideration first, 
the differential equation to be solved is equation (2B), 
which may be written in the following nondimensional
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form :
&V dv dv---- 1-- -|---— A2 —

di-,2dr d£ dr = 0,

may show that our solution in region < r is12

11 See, for example, Carslaw (1941). To obtain the solution in 
the form given by (11), the Laplace transform of the function 
y(L r) has been arranged in the form

where r2 = 2(1 f ^2)r2. (* + ''

y(& r) = Co sin

where Ç = kx, r = t^U, and A2 =fU/gD^. The
initial and boundary conditions are :

» = o, ayaf = r0, awac = o, for $ = o
y = 0, for r = 0 and £ > 0.

The problem is easily treated by the method of La
place transformation.11 Writing v2 = 2(1 + A2)t2 the 
solution is

*(& r) = Co sin f r) + r), (11)

where, for ( > r,

J
' J T

0

J
lf—T

eAn sin (f — 7 — «) 
o

X f e 2A™J0(v^n — m)dmdn, 

and for Ç < t,
7) = 0 = %($, 7).

The motion is steady in the region < r and the 
solution in this region is exactly the same as if the 
motion were nondivergent. The only difference the 
divergence makes is in the region £ > 7. The longer 
the time the larger the region unaffected by divergence. 
For this region the conclusions reached regarding the 
formation of a new trough in the nondivergent case, 
still hold here.

Considering nondivergent motion in an atmosphere 
with horizontal solenoids we use equation (2C) which is

dav d®v <r dv dv
------ *F  2  ---------- -4- — 
dtfr* -------------------6^ fl dr

in nondimensional variables. To solve the same prob
lem we have the following conditions :

y = 0, dv/d% = Co, dh/d^ = 0, for $ = 0 
y = 0, dv/dr = 0, for 7=0.

Using again the method of Laplace transformation we

This gives exactly the same streamlines in the region 
f < T as if solenoids were not operating. The solenoi
dal effect as well as the effect of divergence is present 
only in the region £>r.

The foregoing analysis shows that neither diver
gence nor solenoids essentially modifies the picture 
obtained without them. However, it remains to be 
shown whether the combined effect of divergence and 
solenoids would produce important changes. When 
both divergence and solenoids are present equation 
(2D) is used, in non-dimensional form :

Q2V b d2y d2v
“F 2--------------- - — A. — ~F-------- -|------- = n

d^dr2 d^dr df4 dr2 0 d£dr d£2 '

X 7o(?V( — t — m)dm

The conditions to be satisfied are

dv d2v d®v
y = 0, — = fo, —- == 0, — = — .Co, for f = 0

% d£s
dv

y = 0, — = 0, for r = 0.
dv

The presence of the additional boundary condition 
(d2v/d^ = — f0) may be explained as follows :

The above differential equation is derived through 
the elimination of q from the following two equations :

d’y dh dv d2q dv

dq dq sv 
dT + aC

At x = 0 all but two of the terms of the first equation 
are zero. The two nonvanishing terms, d^/dg*  and 
dv/d£, should balance each other. If dv/d^ = then 
dh/d^ = - Co.

Using the same method as employed before, we 
have

%(& r) = Co sin for < 7,

which is exactly the same as in each of the preceding 
cases.

The foregoing analysis thus shows a steady-state 
motion in the region ( < r in each of the models 
considered. Physically the appearance of this steady
state motion is a natural consequence of the imposed 
boundary conditions. Since the relative vorticity is 
injected at a constant rate at a fixed point a steady
state motion should appear at each point after a

The Laplace transform of v may be expressed as
W = To(l + AT1 + e-^ X J terms involving p and r|.

°f UX -t * sin f- while the transform of the 
the factor e-™S ^"'^5 when ( < r because of the presence of
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sufficiently long time. In a steady-state motion stream 
lines and isotherms are parallel (Rossby, 1942) so the 
solenoids vanish ; convergence is likewise absent in 
the steady region £ < r. Thus the absolute vorticity 
is propagated advectively and a steady motion 
follows.

5. Dispersion of an initial solitary wave ; the blocking 
action and the intensity of disturbances at different 
latitudes

One of the most remarkable phenomena and at the 
same time a very useful tool in forecasting is the so- 
called “blocking” effect, first noted by Garriott (1904) 
and later discussed in more detail by Namias (1947) 
and by Elliott and Smith.13 As described by Namias 
(1947), blocking is associated with a retardation in the 
zonal circulation, which progresses slowly westward. 
For example, the diminution in the strength of the 
westerlies usually first in evidence over Europe or the 
eastern Atlantic, is observed to proceed slowly west
ward to the western Atlantic, North America, the 
Pacific, and sometimes westward into Siberia. The 
decline in circulation proceeds westward and is ac
companied by an increase in mass of air, that is, by 
westward progress of an area of pressure rise. A strik
ing example of blocking was given by Namias (1947). 
The details of the blocking mechanism are still ob
scure. In the following an interpretation will be 
advanced.

" R. D. Elliott and T. B. Smith, "A study of the effects of large 
blocking highs on the general circulation in the northern hemi
sphere westerlies,” 1948 (to be published in this Journal).

In section 2 of this paper it was shown that in a 
uniform atmosphere of finite depth the group velocity 
is negative above a certain wave length. This means 
that part of the energy will be dispersed upstream. 
This upstream propagation of energy may be related 
to blocking.

Assume that initially the atmosphere is undis
turbed with a basic current of constant west wind. 
Due to some process, at time / = 0 part of the free 
surface is lifted so that there is a pressure rise in that 
area. The subsequent development of this pressure 
rise will be investigated. Denoting the deformation of 
the free surface by D', which is a measure of pressure 
change, we have the following nondimensiona! equa
tion in D’ obtained from equation (2B) : 

where A^=^U/gD^ and D» is the initial depth, 
uniform with respect to & Assume an initial solitary 
wave to be represented by

D'^ 0) = 

where a- is an arbitrary nondimensional constant, and 
B any other constant of dimension of length. Then at 
any subsequent time, D'^, r) can be determined 
from the following integral :

/•“ / k3 — k \
D'(£,t)=B I cos I k^—T--------  } dk. (12)

Jo V AHk3 /

Unfortunately this integral is difficult to evaluate 
algebraically. However, because of the presence of the 
exponentially decreasing factor er^2 it is not difficult 
to evaluate numerically.

Since A2 depends on latitude the dispersion should 
be a function of latitude. To illustrate this effect, the 
integral in (12) has been evaluated numerically for 
three different latitudes : 70°, 40°, and 0°. We may 
note that at the pole the basic zonal current U must 
decrease to zero. However, if one could maintain a 
finite zonal current U near the pole, then A2 ~ sec * 
—> oo at the pole and (12) becomes

D'^, r) = B f e-* 2*-cos  kÇdk = }Ba-ljrerr-i**.
Jo

This equation shows that once a pressure rise or fall 
is formed near the pole it would remain there without 
being dispersed. This would correspond to an ex
tremely slowly moving blocking wave.

At the equator, equation (12) reduces to

D'^, r) = B f cos + r^"1 — k)^dk. (13) 
J o

There is a difficulty in evaluating this integral near 
k = 0. As k —» 0 the argument of the cosine becomes 
infinite. A slight increase in k produces a large varia
tion in the argument. Thus the cosine term will 
oscillate very rapidly near k = 0. Therefore, the inte
grand in the range near k = 0 will not contribute very 
much to the value of the final result. However, the 
contribution of this range near k = 0 will be esti
mated. In evaluating the above integral the interval 
of integration is divided into two parts, one from 
k = 0 to 0.2, and the other for k > 0.2. For the first 
interval the integral (13) may be written :

pO.l
I g -u-t^cos &(£ — t) cos k 'r
° — sin — t) sin k~lr^dk.

Expanding e-"2*2 cos — r) and e-"'* 2 sin k^ — r) 
into power series in k (since k is very small for the 
whole range of integration, terms of higher degree 
than k3 are neglected), the general term of the inte
grand is of the form y~" cos y or y~" sin y, where 
y = r/k. These terms can be integrated by parts ; 
for example, when n = 2,

J*  y-2 cos ydy= — y cos y — J*  y~1 sin y dy,
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Fig. 10. Dispersion of an initial solitary wave (r = 0) at the 
equator. The dashed line (t = 1) is the wave profile after ap
proximately 18.4 hours, and the solid line (r = 2) after approxi
mately 36.8 hours.

the last term of which is the sine integral and tabu
lated.

For the second interval (k > 0.2) of (13) ordinary 
methods of numerical integration are used. The 
results of the calculation are given in fig. 10. In this 
computation a2 is taken as 1.5. The dotted curve is 
for t = 0 (the initial solitary wave), the dashed curve 
is for t = 1, and the solid curve for r = 2. At the 
equator r = 1 corresponds to 18.4 hours approxi
mately, if U = 10 m sec-1. We see from the curves 
that after 18.4 hours the high pressure is reduced to 
about 1/7 of its initial value and after about 36.8 hours 
it disappears entirely. It is also to be noted in fig. 9 
that the center of high pressure is shifted westward.

In middle latitudes the value of A4 is finite and 
positive. Hence, a solitary wave formed in middle 
latitude would travel westward and at the same time 
would spread out and be dispersed. Since at the pole 
the wave would remain where it was formed, we may 
infer that the speed of westward retrogression de
creases with increasing latitude. Since at the pole its 
intensity would remain constant the rate of its dis
persion decreases with increasing latitude.

To verify these statements two computations were 
made, one at latitude 40°N and one at 70°N. For both 
cases a value of 17 m sec-1 is used for U, and 8 km for 
Do. Fig. 11 is for 40°N and fig. 12 for 70°N. In both 
figures the dotted curve is for t = 0 (the initial 
solitary wave), the dashed curve is for r = 1, and the 
solid curve for t = 2. At 40°N, r = 1 is approxi
mately 16 hours while at 70°N r = 1 is approximately 
one day. The abscissae of these curves are in units of 

U/^ which is equal to 1000 km approximately in 
fig. 10 and equal to 2200 km approximately in fig. 11. 
From fig. 10 it is seen that the center of the initial 
high pressure at 40° N moves approximately 800 km in 
the first 16 hours, or 1200 km per day, with its central 
pressure diminished by about 1/7 of its initial value.

However, in the next 16 hours it rapidly moves west
ward. Indeed, it is difficult to locate the high center 
after 36 hours ; it is near £ = — 6 or 6000 km west 
of its initial position at the end of 32 hours, corre
sponding to a speed of approximately 7500 km per day 
in the second 16 hours. Further, its intensity is greatly 
reduced. In comparison, the solitary wave at 70°N is 
not dispersed very much. In the first day the center 
of the wave moves from £ = 0 to about £ = — 0.4, 
with a speed of approximately 880 km per day. The 
central pressure is reduced by about only four per cent. 
At the end of the next day (r = 2) the center is 
located at about £ = — 0.8 or 1760 km to the west 
of its original position. Its speed of retrogression in the 
second day is exactly equal to that in the first day, 
not as in the case of 400N where the retrogression is 
accelerated. Its central pressure at the end of the 
second day is, however, diminished by about 1/7 of its 
original value.

Fig. 11. Dispersion of an initial solitary wave (r = 0) at 40 
degrees latitude. 1 he dashed line (r = 1) is the wave profile 
after approximately 16 hours and the solid line (r = 2) after 
approximately 32 hours.

°.

It is a matter of experience that the blocking waves 
are usually observed at high latitudes. In lower 
latitudes they are scarcely noticed. The reason for 
this is very obvious from the computations. In low 
latitudes they are dispersed so quickly that we are 
not able to detect them. Even around 40 degrees 
latitude their life-time is not longer than two days, as 
can be seen from fig. 10.

In a recent report by Elliot and Smith,14 blocking 
action is divided into low-latitude and high-latitude 
cases. The former include those blocking actions 
whose centers lie below 57.5°N. During their investi
gation period the frequency of the high-latitude class 
was higher than that of the low-latitude class. The 
average life of their high-latitude blocking actions 
was considerably longer than, indeed, more than 
double the lifetime of the low-latitude class. This 

14 See footnote 13.
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observation supports our theoretical investigation. 
Unfortunately no data on the speed of the blocking 
wave are available. According to Namias (1947) it 
is about 60 degrees longitude per week. This is not too 
far from the calculated speed at 70°N.

To summarize the discussion in this section, we 
may make the following statements :

1. The blocking effect is a high-latitude phenomenon.
2. The intensity of the blocking wave increases with 

latitude.
3. The speed of the blocking wave decreases with 

latitude.
4. The lifetime of the blocking wave increases with 

latitude.

Another phenomenon which has no apparent rela
tion with blocking action may be associated with it. 
it is a common experience that we do not observe 
large and strong perturbations in low-latitudes, in the 
lower troposphere at least. The intensity of large- 
scale disturbances generally decreases with decreasing 
latitude. In middle and high latitudes we have extra
tropical systems with large ridges and intense troughs. 
In the subtropical easterlies, we observe mainly 
easterly waves with much smaller intensity than the 
extratropical systems. In equatorial latitudes even the 
easterly waves are rare. The current over the equator 
is generally undisturbed except when occasionally 
interrupted by a current from the southern hemi
sphere. This reduction of the intensity of the dis
turbances with latitude could be associated with the 
increase in solenoidal intensity with latitude, but the 
small value of the Coriolis parameter in the tropics 
would favor large systems in tropics. Another way to 
look at the problem is from the point of view of the 
lifetime of the disturbances. Once a disturbance is 
formed in one way or another it can persist a long time 
in middle or high latitudes, but dies out almost im
mediately over the equator, as shown in the above 
computations. Therefore unless there is a continuous

°

Fig. 12. Dispersion of initial solitary wave (r = 0) at 70 
degrees latitude. The dashed line (t = 1) is the wave profile 
after approximately 1 day and the solid line (r = 2) after ap
proximately 2 days.

energy supply from a huge energy source there will 
not be a chance for a large-scale disturbance to persist 
long enough to be observed in low latitudes.

Another conclusion we can reach from our compu
tation is that in divergent motion more energy is 
dispersed upstream while in nondivergent motion no 
energy will be transmitted upstream. In nondivergent 
motion there will be no deformation of the free sur
face. The same differential equations which describe 
this deformation D' also hold for v, the north-south 
component of disturbed velocity. The problem of dis
persion of an initial meridional perturbation will have 
the same solution. We can simply use the results com
puted for D' to interpret v. It is then seen that our 
conclusion concerning the speed of energy propaga
tion is correct. As a matter of fact this is simply a 
restatement that the group velocity in nondivergent 
motion is always positive while in divergent motion 
it may be negative.

One common feature among figs. 10, 11, and 12 is 
the downstream wave formation. At first, the ampli
tude of the newly formed wave increases with time 
at the expense of the initial solitary wave. This verifies, 
partly at least, the statement made in section 2 : in 
nondivergent motion no energy will be available up
stream. In divergent motion though the group velocity 
can be negative, i.e., energy will be transmitted up
stream, its magnitude is smaller than that of the phase 
velocity in the same direction. Hence, the energy trans
mitted upstream cannot overtake the retrogressing 
waves, so that only an increasingly long trailing wave 
train may develop upstream. On the other hand down
stream energy propagation is more rapid than phase 
velocity, so that new waves will form.

From the foregoing analysis it can be stated that 
dispersion is a fundamental process operating in the 
atmosphere. Several frequently observed phenomena 
have been explained by it. It is believed that many 
other phenomena can also be interpreted by this 
process and further illustrations will be given in a 
later report.
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